Some Plethystic Identities And Kostka-Foulkes Polynomials

نویسنده

  • Mahir Bilen Can
چکیده

plays an important role in the Garsia-Haglund proof of the q, t-Catalan conjecture, [2]. Let ΛQ(q,t) be the space of symmetric functions of degree n, over the field of rational functions Q(q, t), and let ∇ : ΛQ(q,t) → Λ n Q(q,t) be the Garsia-Bergeron operator. By studying recursions, Garsia and Haglund show that the coefficient of the elementary symmetric function en(X) in the image ∇(En,k(X)) of En,k(X) is equal to the following combinatorial summation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kostka–foulkes Polynomials for Symmetrizable Kac–moody Algebras

We introduce a generalization of the classical Hall–Littlewood and Kostka–Foulkes polynomials to all symmetrizable Kac–Moody algebras. We prove that these Kostka–Foulkes polynomials coincide with the natural generalization of Lusztig’s t-analog of weight multiplicities, thereby extending a theorem of Kato. For g an affine Kac–Moody algebra, we define t-analogs of string functions and use Chered...

متن کامل

2 00 4 Branching rules , Kostka - Foulkes polynomials and q - multiplicities in tensor product for the root systems

The Kostka-Foulkes polynomials K λ,μ(q) related to a root system φ can be defined as alternated sums running over the Weyl group associated to φ. By restricting these sums over the elements of the symmetric group when φ is of type Bn, Cn orDn, we obtain again a class K̃ φ λ,μ(q) of Kostka-Foulkes polynomials. When φ is of type Cn or Dn there exists a duality beetween these polynomials and some n...

متن کامل

1 7 Ja n 20 05 Branching rules , Kostka - Foulkes polynomials and q - multiplicities in tensor product for the root systems

The Kostka-Foulkes polynomials K λ,μ(q) related to a root system φ can be defined as alternated sums running over the Weyl group associated to φ. By restricting these sums over the elements of the symmetric group when φ is of type Bn, Cn orDn, we obtain again a class K̃ φ λ,μ(q) of Kostka-Foulkes polynomials. When φ is of type Cn or Dn there exists a duality beetween these polynomials and some n...

متن کامل

Hall-littlewood Vertex Operators and Generalized Kostka Polynomials Mark Shimozono and Mike Zabrocki

Kostka-Folkes polynomials may be considered as coefficients of the formal power series representing the character of certain graded GL(n)-modules. These GL(n)-modules are defined by twisting the coordinate ring of the nullcone by a suitable line bundle [1] and the definition may be generalized by twisting the coordinate ring of any nilpotent conjugacy closure in gl(n) by a suitable vector bundl...

متن کامل

Some Plethystic Identites and Kostka-foulkes Polynomials

plays an important role in the Garsia-Haglund proof of the q, t-Catalan conjecture, [2]. Let ΛQ(q,t) be the space of symmetric functions of degree n, over the field of rational functions Q(q, t), and let ∇ : ΛQ(q,t) → ΛQ(q,t) be the Garsia-Bergeron operator. By studying recursions, Garsia and Haglund show that the coefficient of the elementary symmetric function en(X) in the image∇(En,k(X)) of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Ars Comb.

دوره 122  شماره 

صفحات  -

تاریخ انتشار 2015